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ON AN APPROXIMATION THEOREM OF KlJ€'KA AND ~~ 

by 
M.M. Peixoto 

Introduct ion.  

We present  here a somewhat simpler vers ion of t h e  proof of  an 

important approximation theorem of Kupka and Smale [ 1,2], concerning d i f f e r -  \ 

e n t i a 1  equations defined on a compact manifold M". We also say something 

about t h e  non-compact case. 

A s  i s  t h e  case with t h e i r  proofs, by which t h e  present  one i s  much 

inspired,  t h e  whole matter i s  e s s e n t i a l l y  a t r a n s v e r s a l i t y  a f f a i r e  a l a  Thorn 

[ 3 ] ,  and t h e  present  treatment makes t h i s  point  even more c lear .  The simpli- 

. 

f i c a t i o n  and s t reamlining introduced here  stem from t h e  use of  a theorem of 

P. H a r t m a n  (1.8) (which t akes  t h e  place of many computations) and from t h e  

argument i n  (3.2) using t h e  exis tence of a minimum 

c 
-T > 0 f o r  t h e  period of 

t h e  closed orb i t s .  This  last fact allows us t o  avoid a d e l i c a t e  argument 

involving t h e  i t e r a t e s  of  t h e  Poincare t ransformation and ins tead  use a simple z 

t r a n s v e r s a l i t y  argument on t h e  transformation i t s e l f .  

The r e s u l t s  of  Kupka and Smale a r e  equivalent,  Smale working f irst  

wi th  diffeomorphisms and then extending t h e  r e s u l t  t o  vector  f i e l d s  and Kupka, 

as  w e  do here, working d i r e c t l y  w i t h  vector  f i e l d s ;  t he  corresponding r e s u l t  

f o r  diffeomorphisms then  follows immediately. A s  f o r  Kupka' s work [ 23 an 

equivalent  bu t  more pa l a t ab le  version of it can be found i n  h i s  t h e s i s  a t  

IMPA, wr i t t en  i n  Portuguese. A weaker vers ion of t h e  theorem considered here  

has been announced, without proof, by Markus [ 5 ] .  For n = 2 t h e  theorem 

i s  contained i n  a previous r e s u l t  of t h e  author [ 6 ] .  

consider only t h e  case where 8 i s  compact. A t  t h e  end of  t h e  present  

paper we extend t h e i r  r e s u l t  t o  the  case  o f  an open manifold. 

Both Kupka and Smale 

3 

But i n  t h i s  extension t h e  behavior a t  
F 

i n f i n i t y  i s  not taken i n t o  account a t  a l l  and i n  t h i s  r e spec t  t h e  problem 
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may be considered t o  be wide open. 

s e r i e s  of t h r e e  l e c t u r e s  given a t  t he  Universi ty  of Cal i forn ia  a t  Berkeley 

i n  t h e  Summer of 1963, and thanks a r e  due t o  S. Smale, I. Kupka, C .  Pugh, 

M. Shub and R. Abraham f o r  l i v e l y  discussions.  The author i s  a l s o  thank- 

f u l  t o  R. Thom for  comments on a previous d r a f t  of t h i s  paper. 

1. Preliminaries.  

Most of what follows w a s  t h e  ob jec t  of a 

Let M = M" be a compact Cm-different iable  manifold and l e t  % 
r 

be t h e  space of a l l  C -vector f i e l d s  X on M with t h e  Cr-topology, 

r B 1. We suppose t h a t  a metr ic  has been fixed i n  , say by covering 

M with a f i n i t e  number of coordinate neighborhoods; x then becomes a 

Banach space. We assume a l s o  t h a t  M i s  endowed with a Riemannian metric.  

We now f i x  some terminology and r e c a l l  some d e f i n i t i o n s  and 

known r e s u l t s .  

t he  forthcoming l e c t u r e  notes  by t h e  author. 

See f o r  instance [4], and f o r  r e s u l t s  not  e x p l i c i t l y  there ,  

(1.1) Ca l l  Cpt(X) o r  simply Cpt: M + M  t h e  1-parameter group 

of diffeomorphisms generated by a vector f i e l d  X E x . 
(1 .2)  A s i n g u l a r i t y  of X i s  a point  p E M such t h a t  X(p) = 0;  

it i s  sa id  t o  be generic i f  no eigenvalue of t h e  Jacobian matrix of X a t  

p, dX(p), has zero r e a l  pa r t .  

(1.3) a) - The s t a b l e  (W') - and unstable  (W-) manifolds associated 

t o  a generic s i n g u l a r i t y  p a r e  defined as follows. Let k , 0 5; k 4 n, 

b e  t h e  number o f  eigenvalues of The s e t  

W' of  a l l  po in t s  of M such t h a t  t h e  t r a j e c t o r y  o f  X through it tend 

t o  p as t + m  i s  an immersed k-dimensional submanifold of M passing 

through p i . e .  t he re  i s  an 1-1 immersion $: Rk + M  such t h a t  $(O) = p, 

+ ( R  ) = W . I n  general, even i f  n = 2, W+ i s  not  a submanifold of M. 

I n  a similar way, changing t + m  by t + -03 i n  t h e  above d e f i n i t i o n  one g e t s  t h e  

(n-k) -dimensional unstable  manifold W- associated t o  p. 

dX(p) with negat ive r e a l  pa r t .  

k + 

b) There e x i s t s  a (k-1)-dimensional sphere S+ C W', t r a n s v e r s a l  



I 
4 

i . 
~ 

I 

I 

3 . .  
t o  X, d iv id ing  W" i n t o  two connected components, the  one containing 

p being a k-dimensional b a l l  B+. Considering a l l  s u f f i c i e n t l y  small 

a r c s  or" geodesic s t a r t i n g  a t  S' and normal the re  t o  W+ (and so along 

(n-k) independent d i r ec t ions )  one g e t s  a (n-1)-dimensional manifold .Z+, 

w i t h  bcundary, t r a n s v e r s a l  t o  X. We say t h a t  

t o  S+ and c l e a r l y  S' = 3 B" = B' fl C+ . Now 

fixed there i s  z n e i e b s r h m d  % ~f x i n  9l 
then Y i s  t r a n s v e r s a l  t o  C a n d  has  exac t ly  + 

E" i s  a "fence" associated 

once S+ and C m e  
+ 

S ~ I C ~  that xbeiicvei Y E % 

one c r i t i c a l  po in t  p( Y) 
+ such t h a t  t h e  corresponding k-dimensional s t a b l e  manifold W (Y) i n t e r s e c t s  

C" a t  a (k-1)-dimensional sphere S+(Y) which i s  t h e  boundary of a 

k-dimensional b a l l  B (Y)  containing p(Y) and contained i n  W+(Y). 

Besides can be i s o t o p i c a l l y  deformed onto 

S+, t h e  i so topy  t ak ing  place i n  C'; and B+(Y) can be made a r b i t r a r i l y  

Cr-close t o  B be t a k i n g  '% s m a l l  enough. If K=n we put C+ = S'. 

I n  exac t ly  t h e  same manner we define 

manifold w'. 

+ 

S+(Y) = a B+(Y) = B+(Y) n C" 

+ 

C-, S-, B-, . . . f o r  t h e  unstable  

(1.4) The Poincar6 transformation @ associated t o  a closed 

o r b i t  r of X i s  defined as follows. Let p E r and c a l l  C a cross-  

s ec t ion  at  p L e .  a small piece of an (n-1)-dimensional submanifold 

of M containing p and t r ansve r sa l  t o  X. There i s  no loss  of gene ra l i t y  

i f  we i d e n t i f y  C w i t h  a neighborhood of t h e  o r i g i n  i n  R and put 

p = 0. There e x i s t s  a neighborhood of p, C C C , so small t h a t  when- 

ever q f Co t h e  t r a j e c t o r y  of X through q meets C a t  a poin t  which 

we c a l l  @(q). If X i s  perturbed t o  X + 6X with  6X Cr-small then t h e  

corresponding B i n c a r 6  transformation i s  changed t o  @ + 6@ w i t h  6@ C r - s m a l l ,  

and conversely. 

n- 1 

0 

(1.5) A t ubu la r  neighborhood T( r) of a closed o r b i t  r i s  a - 
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Bn- 1 neighborhood of y having r as basis and as f i b e r  and they  c o n s i t u t e  

a fundamental system of neighborhoods of y ; they a r e  always e i t h e r  d i f f eo -  

1 morphic t o  t h e  product 

product (Klein b o t t l e  8). 
S x B n - l  ( s o l i d  t o r u s )  o r  t o  t h e  corresponding twisted 

(1.6) a) A generic closed o r b i t  y of X i s  one such t h a t  t h e  

Jacobian matrix of (0 a t  0 , d @ ( O ) ,  has  no eigenvalue of  modulo 1. If k, 

0 d k 5 n-1 , i s  the number of such eigenvalues with modulo 

of a l l  t r a j e c t o r i e s  of X tending t o  Y as t --)a ( i . e .  whose & l i m i t  s e t  

i s  y) i s  an immersed ( k  + 1)-dimenslunal submanifold W' of M ca l l ed  t h e  

< 1 then t h e  s e t  

s t a b l e  manifold associated t o  y ; s i m i l a r l y  one has  t h e  unstable manifold 

W-, of dimension (n -k ) ,  associated t o  y. b) A r e s u l t  similar t o  (1.3b)  

holds here  with t h e  d i f f e rence  t h a t  now 

e i t h e r  a product 

and S = 3 B = B+ fl C' i s  no more a sphere. 

B+ i s  not  a k-dimensional b a l l  b u t  

S1 X B k - l  ( s o l i d  to rus )  o r  t h e  corresponding t w i s t e d  product 

+ + 

(1.7) The s t a b l e  and unstable manifolds W' and W- of  r i n t e r s e c t  

+ t ransv&sal ly  along r. The connected component of W fl Co containing p = 0, 

V' i s  t h e  s table  manifold of @ a t  t h e  f ixed po in t  p = 0 E So( see 1.4) .  S imi l a r ly  

we have t h e  unstable manifold v- of @ a t  0. Now it i s  easy t o  v e r i f y  

t h a t  y being genericthe map $ : Co + C x C defined by +(q) = ( q , @ ( q ) )  

i s  t r a n s v e r s a l  t o  the diagonal  A of C X C a t  (p ,p ) .  Also, i f  $ i s  

t r a n s v e r s a l  t o  A a t  ( p , p ) ~  A ( s o  t h a t  (p,p) i s  an i s o l a t e d  point  of 

A fl @ ( S  ) )  then it i s  possible  t o  make a C r - s m a l l  change 64 i n  9 i s  

t h a t  6\lr(O) = 0 and d ( $  + 6$)(  q) has no eigenvalue with modulo 1; besides 

0 

( $  + 6\lr>(4) = ( q , ( @  + W q ) ) .  

(1.8) Let 

dx/dt = AX + f ( x )  , f ( O )  = 0 , d f ( 0 )  = 0 , 
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have 0 E Rn a s  a generic  s ingu la r i ty  and consider t h e  associated l i n e a r  

system dy/dt = Ay. Let q t  and Xt r espec t ive ly  be the  corresponding 

I-parameter group of diffeomorphisms. Then there i s  a homeomorphism T: x + y  
-I 

defined i n  t h e  neighborhood of t h e  o r i g i n  and such t h a t  At = mtT . T h i s  

means t h a t  'pt i s  topologica l ly  equivalent t o  Xt . So t h e  homeomorphism 

T m..ps t r q j e c t ~ r i e s  nf t h e  n ~ ~ - ~ i ~ e ~  eq.mti=r, cz tc  trqjectcries of t h e  

l i n e a r  equation preserving the  parametrization i . e .  t h e  t - i n t e r v a l  between 

t w o  po in t s  on one i n t e g r a l  curve i s  t h e  same as t h e  t i n t e r v a l  between t h e  

corresponding poin ts  on t h e  image. 

f o r  t ransformations @ : Rn + R  having a f ixed poin t  0 with d@(O) having 

no eigenvalue with modulus 1. 

There i s  a l s o  a corresponding theorem 

n 

These r e s u l t s  a r e  due t o  Hartman [4 ] .  

2. The theorem. 

Let  i = 1,2,3, be t h e  s e t  of a l l  X E x s a t i s f y i n g  condi t ions 

G1: t h e  s i n g u l a r i t i e s  of X 

G2: t h e  closed o r b i t s  of X a r e  generic  

G3: t h e  s t a b l e  and unstable manifolds associated t o  t h e  generic  

a r e  generic (and so f i n i t e  i n  number) 

s i n g u l a r i t i e s  and closed o r b i t s  a r e  t ransversa l .  

I n  dimension n = 2 condi t ion G says t h a t  t h e r e  i s  no t r a j e c t o r y  3 
connecting saddle points.  

a subset  of x i s  ca l l ed  r e s i d u a l  i f  it conta ins  t h e  countable i n t e r s e c t i o n  

of s e t s  open and dense i n  r ;  from Baire's theorem it i s  necessa r i ly  dense 

i n  , s ince  i s  a complete metr ic  space. We now s t a t e  t h e  theorem of 

Kupka and Smale. 
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Theorem. 9 i s  r e s i d u a l  i n  X . 
- The f a c t  t h a t  gl i s  open and dense i n  X i s  an easy consequence 

o f  Thorn's t r a n v e r s a l i t y  lemma, see f o r  i n s t ance  [6]. 

t h i s  theorem would then be t o  prove t h a t  

p3 i s  r e s i d u a l  i n  v2. For t e c h n i c a l  reasons we proceed as follows. 

A n a t u r a l  way t o  prove 

y2 i s  r e s i d u a l  i n  gl and t h a t  

Let T > 0 b e  an in t ege r  and ca l l :  

E ( T ) :  t h e  subset o f  7 such t h a t  X E X ( T )  implies  t h a t  a l l  

closed o r b i t s  of X of period ST a r e  generic;  

X ( T ) :  t h e  subset of X(T)  such t h a t  when X E Z ( T )  then t h e  

s t a b l e  and unstable  manifolds of a l l  s i n g u l a r i t i e s  and of 

- 

a l l  closed o r b i t s  of X with period ST a r e  t r ansve r sa l .  

Since 

t h e  theorem w i l l  be proved once we prove t h e  following proposit ions.  

Proposit ion 1. X(T) i s  open and dense i n  x 
Proposit ion 2. X ( T )  i s  r e s i d u a l  i n  x ( T ) .  

We remark t h a t  since 

from Proposit ion 1 it follows t h a t  g12 i s  r e s i d u a l  i n  3l and so a l s o  i n  

E .  

i s  proved. 

We now proceed t o  t h e  proof of t hese  proposi t ions a f te r  which t h e  theorem 

3. Proof o f  Proposit ion 1. - -- 
To t h a t  end we need t h r e e  Lemmas. 
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Lema 1. If p i s  a s ingular  po in t  o f  X E yl and T > 0 then t h e r e  i s  a 

neighborhood U of  p i n  M and a neighborhood % of X i n  yl such 

t h a t  whenever Y E % then Y has i n  U exac t ly  one s ingular  point  p(Y) wnich 

depends continuously on Y and every closed o r b i t  of Y meeting U has period > T. 

Proof. The part concerning U, and p ( Y )  follows from t h e  fact t h a t  yl 
i s  .&id d -  enst: - -  i n  E . From (i.8j one ge t s  t h a t  U may be taken so small 

t h a t  every t r a j e c t o r y  of X meeting U spends the re  a time > 2T. Now a 

simple semi-continuity argument shows t h a t  t h e r e  e x i s t s  a neighborhood 

X i n  yl such t h a t  every t r a j e c t o r y  of Y €9 meeting U spends the re  a 

time > T, proving Lemma 1. 

~n analogous holds f o r  clcued o r b i t s .  

% of 

Lemma 2. 

period ST. Then t h e r e  i s  a tubular  neighborhood V of r and a neighborhood 

2/ of X i n  

besides,  with t h e  eventual  exception o f  ‘((Y) every closed o r b i t  of Y meeting 

V has  period > T ;  r ( Y )  va r i e s  continuously with Y. 

Let T > 0 and r be  a generic closed o r b i t  o f  X E yl with 

yl every Y 6 Y has  a generic  closed o r b i t  ‘ ( ( Y ) C V  and 

Proof. Let y have period T 5 T and put  N = 1 + IT/?]  where t h e  bracke t  

s tands f o r  t h e  g r e a t e s t  in teger  contained i n  

choose t h e  c ross -sec t ion  C so small t h a t  9: Co + E  and a l l  i t s  i t e r a t e s  

9 , k = 1 ,..., N have p = r fl C as t h e  only f ixed point .  

associated t h e  map 

diagonal  of C x C a t  (p,p) and so t h i s  i n t e r s e c t i o n  i s  i so la ted .  Now a 

C - s m a l l  change from X t o  Y gives  raise t o  a C -small change i n  3ik with 

T/? . Referr ing t o  (1.4)-(1.6), 

k To ak t he re  i s  

k 9 : Co + C  X C and t h e  graph of Ok i n t e r s e c t s  gene r i ca l ly  t h e  

r r 

t h e  r e s u l t  t h a t  t h e  corresponding graph again i n t e r s e c t s  gene r i ca l ly  t h e  diagonal. 

From t h i s  it r e s u l t s  t h a t  one may f ind  neighborhoods V of r and c;2/ of X 
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such t h a t  f o r  Y EW t he  corresponding Poincare transformation @ ( Y )  and a l l  

i t s  i t e r a t e s  up t o  order N have only one f ixed point,  p(Y). To p(Y) t h e r e  

corresponds f o r  Y a generic closed o r b i t  y (Y)  C V and any o the r  closed 

o r b i t  of Y meeting V corresponds t o  a f ixed  po in t  of @'(Y) with I > N. 

Therefore i t s  period T' i s  c lose  t o  I times t h e  period of y ( Y )  and s ince  

t h i s  one i s  very close t o  2 ,  i f  i s  small enough, w e  ge t  t h a t  T' > TN > T. 

Lemma 2 i s  proved. From Lemma 2 we g e t  immediately t h e  following. 

Corollary. I f  X E . X ( T )  then X has only a f i n i t e  number of closed o r b i t s  

of period 4 T. 

Lemma 3. Let K be a compact subset of M and assume t h a t  no po in t  of K 

i s  a s i n g u l a r i t y  or belongs t o  a closed o r b i t  of a vector  f i e l d  

5 T. Then t h e r e  e x i s t s  a neighborhood % of X i n  such t h a t  every closed 

o r b i t  o f  Y E% meeting K has period > T. 

X, of period 

Proof. To every point i n  K w e  a s soc ia t e  a neighborhood U o f  it i n  M , a n d  

a neighborhood 9 of  X i n  2 such t h a t  whenever Y €z/ then every closed 

o r b i t  of -Y. i n t e r s e c t i n g  U has period > T. We then e x t r a c t  a f i n i t e  covering 

of K by sets U and c a l l  "2 t h e  i n t e r s e c t i o n  of t h e  corresponding F'' . 
Lemma 3 i s  proved. 

We now prove 

(3.1) X(T) i s  open i n  PI. 

Proof. L e t  p E M be such t h a t  it i s  n e i t h e r  a s i n g u l a r i t y  of X e %(T) o r  i s  

s i t ua t ed  on a closed o r b i t  o f  period S T. L e t  be a neighborhood of X i n  

9 such t h a t  whenever Y then every closed o r b i t  of  Y meeting W has  

period > T .  If p i s  a s i n g u l a r i t y  o f  X o r  i s  on one of  i t s  closed o r b i t s  

1 

of period S T we apply Lemma 1 o r  Lemma 2 t o  g e t  neighborhoods U and % or  
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- .  
V and 2 / .  Since M i s  compact we f ind a f i n i t e  number of U, V and W 

covering M. The i n t e r s e c t i o n  of the corresponding %, Y and w contains  

an open s e t  made up of po in t s  of a ( T ) ,  proving (3.1). To  end t h e  proof 

of Proposi t ion 1 we need only t o  prove t h a t  

( 3 . 2 )  X(T) i s  dense i n  $l. 

Proof. Let X 6 9.. We want t o  f ind  Y E % (T) a r b i t r a r i l y  clos'e t o  X 

and we d o  so by means of a f i n i t e  number of successive modifications on X. 

Let T > 0 be such t h a t  no closed o r b i t  of X has period l e s s  than 

T. Such T exists fo r  otherwise we would f ind  a sequence of closed o rb i t s ,  

whose per iods  tend t o  zero, converging t o  a s ingular  po in t  of X; from (1.8) 

t h i s  i s  c l e a r l y  impossible. 

Now l e t  F = r ( ~ , 3 ~ / 2 )  be t h e  s e t  of a l l  closed o r b i t s  of X whose 

per iods a r e  within t h e  closed i n t e r v a l  [ ~ , 3 ~ / 2 ]  . Clear ly  F i s  a closed set 

i n  M. We now cover every t r a j e c t o r y  i n  I? by two concentr ic  neighborhoods 

V and U, V C V C U  , and ca l l  C and C', C C C' t h e  corresponding 

cross -sec t ions ;  C' i s  chosen so  small t h a t  it meets every t r a j e c t o r y  of I' 

j u s t  once. Since F i s  compact we ex t r ac t  from t h e  covering a f i n i t e  set 

Vi, Ui, Vi C vi C Ui, i = 1,. . .,k , such t h a t  t h e  V i ' s  cover r. Then, 

from (l.J+), by making a Cr-small change i n  t h e  P o i n c a d  transformation, vanishing 

ou t s ide  Z (c ross -sec t ion  corresponding t o  V ) we get,  by t r ansve r sa l i t y ,  a 

vector  f i e l d  Y i ,  C -c lose  t o  X, agreeing e i t h  X outs ide  of U1, and such 

t h a t  i n  VI every closed o r b i t  o f  Y i  of period d 3 ~ / 2  i s  generic.  A n  

important po in t  here i s  t h a t  b y t a h i n g  Y; c lo se  enough t o  X every closed 

o r b i t  of Yi i n  V1 which corresponds t o  m turns ,  m > 1, (i.e. t o  a f ixed 

poin t  of  t h e  

t o  m? ,'I S 7 S 3 ~ / 2  and so  g rea t e r  t h a n  3 ~ / 2 ;  every t r a j e c t o r y  corresponding 

t o  m = 1 i s  generic.  From t h e  Corol lary t o  Lemma 2 

1 1 
r 

m-th i t e r a t e  of t h e  Poincare transformation) has  period c lose  
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has only a f i n i t e  number of closed o r b i t s  of 1' yi it follows t ha t ,  i n  V 

period 6 3 ~ / 2 .  

We now proceed as above and per turb Y1' s l i g h t l y  i n s i d e  U2 g e t t i n g  

Y; such t h a t  i n s i d e  V2 a l l  t r a j e c t o r i e s  of Y ' of period 6 32/2 2 a system 

a r e  generic;  from Lemma 2 one g e t s  t h a t  f o r  Y; c lose  enough t o  Ylt then 

we do not  d i s t u r b  t h e  s i t u a t i o n  t h a t  we had before i n  V i . e .  i n s i d e  V1 U V2 

a l l  t r a j e c t o r i e s  of Y2' of  period 5 3 ~ / 2  a r e  generic.  Repeating t h i s  argument 

up t o  Vk we obtain Y1 = Ykl such t h a t  it i s  a r b i t r a r i l y  c l o s e  t o  X and 

besides  a l l  o f  i t s  t r a j e c t o r i e s  of period 5 3 ~ / 2  contained i n  V' =u V, 

1 

a r e  generic.  Outside V I ,  Y1 might 

6 3 ~ / 2 .  But applying Lemma 3 with 

enough t o  X a l l  per iodic  o r b i t s  of  

I ii 1 
have nongeneric closed o r b i t s  of period 

K = M-V' w e  see  t h a t  f o r  Y1 c lose  

Y1 meeting K have period > 3 ~ / 2 .  

So a l l  per iodic  o r b i t s  of Y1 of period 6 3 ~ / 2  a r e  generic.  

We now e s s e n t i a l l y  r epea t  t h e  procedure and work with t h e  s e t  I ' ( 3 ~ / 2 , 2 ~ )  

of a l l  closed o r b i t s  o f  Y1 with period within t h e  i n t e r v a l  [ 3 ~ / 2 ,  2 ~ ' ) .  Compared 

with t h e  previous case t h e r e  i s  a l i t t l e  d i f f e rence  here  namely t h a t  

per iodic  o r b i t s  of period < 3 ~ / 2  (whereas X had none o f  period < T). But 

Y may have , 1 

t hese  a r e  generic  and f i n i t e  i n  number and w e  can f ind  a neighborhood W of t h e i r  

union d i s j o i n t  from t h e  U's employed i n  covering I?(3T/2, 2 ~ ) .  We then do as 

before  t ak ing  K = M-VI-W and ge t  Y2 such t h a t  a l l  of i t s  closed o r b i t s  of period 

i 2 T  a r e  generic. 

Proceeding t h a t  way we have t h a t  I being an i n t e g e r  such t h a t  17/2 > T, 

Y1 = Y 

of period I T a r e  generic  i. e. Y E & ( T ) .  T h i s  proves (3 .2)  and a l s o  Proposit ion 1. 

can b e  made a r b i t r a r i l y  c l o s e  t o  X and such t h a t  a l l  of i t s  closed o r b i t s  

4. Proof of Proposit ion 2. 

To show t h a t  Z(T) i s  r e s i d u a l  i n  Z ( T )  we need only t o  show t h a t  

(4 .1)  given any X E X(T) t h e r e  ex is t s  a neighborhood % of X i n  
H 5 ( T )  such t h a t  $(T)  n % contains  a r e s i d u a l  set  i n  9. 

To prove (~+.1) l e t  pi, i = l , . . . , N  be t h e  c r i t i c a l  elements of X 
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* -  i. 

i . e .  i t s  s i n g u l a r i t i e s  and closed o r b i t s  of period ST; t hese  m e  generic. Now 

l e t  Ui and 

such t h a t  whenever Y E 9. then, ins ide  Ui, Y has one and only one cr i t ical  

element pi(Y), a s  i n  Lemmas 1 and 2. Assume these  Ui t o  be d i s j o i n t  and t h a t  

one chooses t h e  fences 

meets 

Qi be neighborhoods o f  pi i n  M and X i n  . E ( T ) ,  respect ively,  

1 

f ci C Ui and %i so small t h a t  Bi(Y) C Ui and 
+ 

t r a n s v e r s a l l y  when Y E %i ; see (1.3b) and 1.6b). 

Define the  "t-expmsi~"r~, t > 0, of t h e  st2bl.e cr * a s t x ? A ~ ' b z ~ ~  
+ 

B;(Y) as 

For t < 0 we have a " t -contract ion".  To each pair of i nd ices  i, j, 1 5 i, 

j I N and in teger  T > 0 define yl(i,j; T) 

such t h a t  B i ( Y ;  7 T) i s  t r a n s v e r s a l  t o  E!(Y; 2 T). We now claim t h a t  t o  prove 

(4.1) have only t o  prove t h a t  f o r  every 

as t h e  set of a l l  Y E %i n 2 .= %. 
J 13 

J 
T > 0 

(4.2) q(i, j; T) i s  open and dense i n  

I n  f a c t ,  from ( k . 2 )  it follows t h a t  

i, j=1 
N 

i s  open' and dense i n  n Q. = % 1 
i= 1 

Now ( l ~ . l )  follows from t h e  f a c t  t h a t  

To prove (4.2) .it i s  enough t o  prove t h a t  

(4.3) t h e  s e t  F ( i , j  ; T) of a l l  f i e l d s  Y E 9 ij such t h a t  B~(Y;T)  

'i j 

i s  t r e a t e d  t h e  Same m y -  

+ 
i S  t r a n s v e r s a l  t o  B . (Y;  -T) i s  open and dense i n  J 

+ 
Since t h e  case of Bi(Y;-T) and B l ( Y ;  T) 

J 



1 2 -  

We now proceed t o  prove (4.3). 

That y(i,j ; T) i s  open i n  %ij i s  q u i t e  obvious from (l.3b) 

and from t h e  standard fact  t h a t  t h e  t r a n v e r s a l i t y  condi t ion i s  preserved under a 

C r - s m a l l  per turbat ion of t h e  manifold invloved, r 

To prove dens i ty  we show t h a t  being 

and t h i s  i s  then we can f ind  E 2/ fl y(i, j ;  T) 

2 1. 

any neighborhood 

done as follows. 

of Y E ?kij 
I f  BY(Y; T) 

r - + i s  t r a n s v e r s a l  t o  B . ( Y ;  -?) we take Y = Y. If not, we  make a small C -change 

i n  t h e s e  manifolds so  as t o  put  them t r a n s v e r s a l l y ;  af ter  which it remains t o  

show t h a t  t h i s  change can b e  obtained by changing Y i n t o  ? . It i s  a 

s i t u a t i o n  analogous t o  (1.4) bu t  more complex. 

we consider f i r s t  t h e  case 

J 

We proceed now t o  do t h i s  and 

i # j . 
From (1.3b) we can f ind  V > 0 so b i g  and choose a neighborhood of 

Y, "J1 C w a n d  the fence C: = C so s m a l l  t h a t  B f ( Z ; - v ) n  B.(Z;- 'r)  + = 6, 
1 J 

cp (Z)C n B-!(Z; - 2 )  = 6 f o r  Z E v. 
-V J 1 

behavior of t r a j e c t o r i e s  o f  d i f f e r e n t i a l  equations we can choose t h e  fence 

C so  s m a l l  t h a t  t h e  app l i ca t ion  

From w e l l  known facts about t h e  l o c a l  

A: C X [-v,  'r] + M  

defined by 

qx, t )  = 'Pt(Y)x , x c, t E [ -v ,  73 

be a diffeomorphism. The image 

A(c X [ - V ,  T]) = L c M 

i s  a manifold with boundary. Clear ly  

B;(z, n B ~ ( z ;  -q c L , z E wl , J 

if i s  small enough so t h a t  we need only t o  care f o r  what happens i n s i d e  L. 
) 



. 
. .  

L e t  L1 = q , ( Y ) Z  be a face of L and 

+ 
I J 

Since B I ( Y ;  7) and B.(Y: -7) can only i n t e r s e c t  along pieces  of t r a j e c t o r i e s  

of t he  f a c t  t h a t  they are t ransversa l  a t  a given point  *lies t h a t  they  a r e  

t r ansve r sa l  all along the  common piece of t r a j e c t o r y  passing through t h a t  point .  

From this  it follows t h a t  are t r ansve r sa l  if and only 

if ~~=(Y)s ; (Y)  is  t r ansve r sa l  t o  C(T) . We proceed t o  construct  our f i e l d  

Y E  i n  such a w a y  t h a t  cp,(?)Si(Y) i s  t r ansve r sa l  to Ce; T) = 

+ 
Li n Bj@; -7) 

(4.3) . L e t  C = cp-,(Y)C(.c) be t h e  empac t  manifold obtained by pul l ing  back 

C(T) t o  C through t h e  t r a j e c t o r i e s  of Y. In C we have then the  two com- 

Y 

B i ( Y ;  7) and B?(Y; -7) 
J 

- 

which implies t h a t  Bin; 7) i s  t r ansve r sa l  t o  E . F ;  -T), proving 
J 

pac t  sub-manifolds S;(Y) and C which may or m a y  not be t ransversa l .  If 

they are, we are through f o r  then C(T) and cpT(Y)S;(Y) a re  a l so  t ransversa l .  

If not, we apply t o  c , s~(Y) and c a c l a s s i c &  isotopy lemma of mom 

r3, P a .  

It follows then  t h a t  given a neighborhood R of &, d i s j o i n t  from 

C and Si!Y), and k! > O  we can f i n d  a 1-parameter family of diffeomorphisms 

each $-close t o  the  i d e n t i t y  by less than  k! and such t h a t  

Jro = i d  , 
J ~ ~ ( S ~ ( Y ) )  i s  t r ansve r sa l  t o  c , 
q s = i d  i n  R ,  

anss(x)/asn = o f o r  x E c, at s = o , i  and n = i,2 ?... 

( reparameter iz ing i f  necessary). 



- 
From t h e  isotopy $ we pass t o  t h e  f i e l d  Y as follows. L e t  

S 

14 - .  

$: c x [-v, .] -+c x [-v, 23 

be a diffeomorphism defined by 

$(x, T )  = (x, t)  i f  -v 5 t 5 o 
q(x, t) = (qt,&x), t) if 0 5 t 'c 

We aTe then spreading t h e  isotopy JIs between time t = 0 and t = T. This  

induces i n  a n a t u r a l  way a deformation of t h e  "horizontal" l i n e s  i n  

corresponding t o  the  t r a j e c t o r i e s  of Y i n  L, and t h e  new l i n e s  so obtained 

are t h e  i n t e g r a l  curves af Y. Precisely ? i s  defined as follows. L e t  

E = (0 , l )  be t h e  ho r i zon ta l  u n i t  f i e l d  i n  C X [-v, 71, image through 

of Y i n  L and de f ine  

C X [-v,-c], 

- 

- 
Y(x) = Y(x) if x E M-L 

where t h e  star stands f o r  d i f f e r e n t i a l .  From t h e  condi t ions s a t i s f i e d  by t h e  

isotopy $s it follows t h a t  F i s  i n  fact a vector  f i e l d  on M and it i s  

also clear t h a t  by choosing & small enough one has  t h a t  Y E 9;. Clea r ly  

A s  remarked before we need only t o  show t h a t  

cpT(y)Sf(y). Now from t h e  way Y and X were defined we have S;(Y) = Sf(?) 

and 

C ( T )  i s  t r a n s v e r s a l  t o  
- 



fin the other hand C( T) = A(C, T). Since #l (Y)~i (F)  i s  t r a n s v e r s a l  t o  C, 

A( drl(T)Sf(Y), T) 

case i f 3. 

i s  t r a n s v e r s a l  t o  X( C, T), completing t h e  proof of (4.3) i n  

To t h e  case i = j w e  can apply t h e  above argument w i t h  l i t t l e  

modification I n  t h i s  case Bf(Y; T) and BI(Y; -7) meet outs ide  L along 

t h e  cr i t ical  element p,(Y). 

only matters what happens i n s i d e  L, and t h i s  goes unchanged. 

Proposit ion 2 i s  now complete. The Theorem i s  proved. 

But there they  are t r a n s v e r s a l  so  t h a t  again 

The proof of 

The non compact case. '. - - - 
r If M = I8 i s  non compact t h e  C -topology, r Z 1, i n  t h e  space 

P: o f  all vector f i e l d s  i n  M i s  defined as follows. Let 

K1 C K2 C ... C K. C Ki+l... C M (5.1) 1 

be a decomposition of  M i n t o  an expanding sequence of compact s e t s  each 

having non empty i n t e r i o r  k. C Ki+l. If X E P: and 6(x) > 0 i s  a 
Ki 1 

continuous function defined on M l e t  

6. = i n f  6(x) , x E K~ - ki-l , K~ = @ 
1 

A(X76(x)) = W ( Y  I d(X,Y; Ki-Ki - 1) < tji) . -  

where . d(X,Y; Ki-Ki 1) stands f o r  t h e  usua l  Cr-distance between X and Y 

i n  Ki-Ki-l. When 6(x) var i e s  in t h e  s e t  of p o s i t i v e  continuous funct ions 

on M t h e  s e t s  A(X,6(x)) form a bas i s  i n  X f o r  a system of  neighborhoods 

- 

of a topology i n  3, which does not depend on t h e  decomposition '(5.1) or  on 

t h e  metric chosen on each Ki. 

Vector f i e l d s  i n  M are maps of M i n o t  i t s  tangent bundle T(M), 

T(M) , and Whitney [ 71 has introduced a Cr-topology i n  t h e  s e t  of mappings X: M 



of one manifold i n t o  another. 

t ha t  would a r i s e  t h a t  way and 

The above topology i s  exac t ly  

C'-topology of we c a l l  it the  

16 
t h e  topology 

Whitney i n  % 

I f  M i s  compact we ge t  t h e  metr izable  topology we had before.  Tor a 

non-compact M t h e  Whitney topology i n  % i s  nonmetrizable bu t  it has 

t h e  Baire property [83. 

Whitney topology, say the  compact open topology or t h e  topology of uniform 

convergence, both of which would make E metrizable.  But t h e  considerat ion 

One might be tempted t o  consider  i n s t ead  of t h e  

of a vector  f i e l d  X i n  R' with i n f i n i t e l y  m a n y  generic  s i n g u l a r i t i e s  

which as they go t o  i n f i n i t y  have t h e i r  eigenvalues tending t o  zero shows 

t h a t  i n  both of these  topologies  we may have a f i e l d  Y very c lose  t o  X 

which no longer exh ib i t s  t hese  s ingu1ari t ies .Therefore  these  topologies  a re  

no  good f o r  deal ing wi th  "generic" p rope r t i e s  as we a r e  doing here. 

4 

- .  
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The statement o f  the theorem of Kupa-Smale, in t h e  compact 

or  the  non-compact case is exactly the  same. 

s t ra ightforward modifications needed t o  cover the  non-compact case. 

We now indica te  the  

We assume t h a t  the  decomposition (5.1) has been 

notat ions of paragraph 2. 

(5.3) is  open and dense i n  2 . 
Proof. Follows f r o m  a t r a n s v e r s a l i t y  

compact case. 

Call 

x E %  g (T ;  Ki): t he  subset of elements 

chosen and use the  

argument as i n  t h e  

such t h a t  every closed o r b i t  of X which meets Ki 

and i s  of period S T i s  generic. 

t he  subset  of E(T; Xi) 
# 

%(T; Ki): such t h a t  when X E k(T ;  K,) 

then the s t ab le  and unstable  

I 

manifolds of t h e  

s i n g u l a r i t i e s  of X i n  Ki 

of per iod  4 T meeting Ki 

We have, T and i being fixed, 

or of t h e  closed o r b i t s  

are t ransversal .  

(5. 4) E(T; Ki) is  open and dense in Fl 
Proof. Le t  X E E (T; Ki) then  the  argument of (3.1) - 

shows t h a t  t he re  is a c e r t a i n  6. > 0 such t h a t  whenever Y E: A(X;Gi) 
1 

then Y B e 

To 

6 ( x )  > o on 

(T; Ki) proving openess. 

prove dens i ty  l e t  X E and l e t  A(X; G(x)), 

71 M , be a neighborhood of X i n  



Now r epea t ing  t h e  argument of ( 3 . 2 ) ,  f o r  t h e  case where w e  use 

i n  place of t h e  compact manifold, it i s  e a s i l y  seen t h e  compact s e t  Ki 

t h a t  one can g e t  a vector f i e l d  Y on M, Y E %(T;Ki) ,  obtained by 

per turbing X on a s m a l l  neighborhood of Ki contained i n  Ki+l 

such t h a t  

and 

d(X,Y; K -k < 6j , j 5 i, 
3 - 1  

t h e  6's being as  i n  (5 .2) .  Since Y = X ou t s ide  Ki+ 1 it i s  q u i t e  

c l e a r  t h a t  Y E A(X,  6(x)) and so 

Y E !X(T;Ki) n A(X, 6 (x) )  , 

proving dens i ty  and completing t h e  proof of (5 .4) .  

(5 .5)  ? (T; Ki) i s  residual i n  % ( T ;  Ki) 

Proof. The argument used i n  the proof of - 
Proposit ion 2 can be c a r r i e d  through here  w i t h  no e s s e n t i a l  d i f f e r -  

ence. 

We then have t h e  theorem of Kupka-Wale: 

(5.6) w $ is  r e s i d u a l  i n  g 

Proof. Follows immediately from (5 .3) ,  (5.4), (5.5) and from 

the fact  t h a t  
00 00 9 = E l  ' id ' ?(T; Ki) . 

From (5.4) it follows immediately t h a t  % ( T )  i s  

residual i n  !T bu t  actually we can show that, as i n  t h e  compact case, 



( 5 . 7 )  E (T) i s  open and dense i n  I . 
Proof. Let X E 3 (T) and l e t  ‘ii be such tha t  when- 

ever d(X,Y; Ki) < v i  then Y E I (T; Ki) , see (5.4). Now 

any continuous ~ ( x )  > 0 on M such tha t  ~ ( x )  < vi f o r  x E: Ki 

i s  such that Y E A(X; ~ ( x ) )  implies Y c I (T) and t h i s  proves 

%<T) open density of % ( T j  f o i i o w s  f r o m  (3.4j. 

c 
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